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Abstract
Soil salinity is a major global environmental factor limiting plant growth and productivity. Wheat seeds need to be able to 
germinate and establish seedlings in saline soils for sustained productivity. In this study, we investigated seed germination-
related traits under salt stress conditions in 239 diverse Iranian wheat landraces for evaluation of salt stress tolerance. Seed 
of the landraces along with relevant checks was germinated in salt and control solutions until 14 days. Initially, 10 randomly 
selected accessions were subjected to six different (25 mM, 50 mM, 75 mM, 100 mM, 125 mM, 150 mM) salinity levels for 
standardization. The salinity level 125 mM NaCl was found more effective concentration for the discrimination of genotypes 
for various physiological indices, viz. germination percentage, coleoptile length, root and shoot length, fresh root and shoot 
weight, dry root and shoot weight, and vigor index. After 14 days, germination percentage and all seedling traits were found 
to be affected due to salinity. Salt tolerance index maintained a significant positive correlation with seedling traits which 
indicates that these parameters could be used as selection criteria for screening wheat genotypes against salt stress. Significant 
differences were observed for coleoptile length, root–shoot length, fresh root–a shoot weight, dry shoot weight, and vigor 
index among the wheat landraces. From the overall observation of germination percentage and early seedling growth, it was 
concluded that the wheat landraces accessions including IWA 8600278, IWA 8600291, IWA 8611786, IWA 8600179, IWA 
8600303, and IWA 8610487 showed better salt tolerance than Kharchia 65, the universal salt-tolerant variety used so far in 
wheat-breeding programs.
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Introduction

Salinity is one of the most important environmental factors 
limiting crop production of marginal agricultural soils in many 
parts of the world. It has been reported that more than 6 mil-
lion ha land in India is salt affected (Chatrath et al. 2007). 
Soil salinization is increasing due to excessive irrigation and 
industrial pollution and is emerging as the main threats facing 
modern agriculture sustainability (Hamam and Negim 2014; 
Klay et al. 2014; Ben-Romdhane et al. 2018). Saline soils are 
defined as having electric conductivity (ECe) >  4dSm−1, and 

alkali soils are also referred as sodic soils with pH greater than 
8.2, exchangeable sodium percentage (ESP > 15) and soluble 
salts mostly carbonate and bicarbonate of sodium, capable of 
alkaline hydrolysis (Abrol et al. 1980). Salt accumulation in 
soil affects plant growth to different degrees at different stages 
(Bernstein 1975), and different plant species exhibit different 
growth response (Glenn et al. 1999). In India, 6.7 M ha land 
under wheat cultivation is affected by salt including 3 M ha 
by salinity and 3.7 M ha by sodicity/alkalinity, distributed 
across 15 of the 29 states. Out of these 15 states, eight con-
tribute ~ 97% of national wheat production and have ~ 5.6 M ha 
affected by salt. Soil acidity affects 25 M ha of Indian soils, 
including ~ 30% of current areas under cultivation (Khokhar 
et al. 2017). Indian Punjab, usually known as the wheat bowl 
of India, has around 3.52 million hectare area under wheat 
crop annually. In view of changing climate, many new soil 
stresses have emerged in different niches in Indian Punjab, the 
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soil salinity being much pronounced in South Western districts 
of the state.

Among the abiotic stresses, salinity is one of the most 
important stresses that adversely effect the rate of germina-
tion, seedling establishment, plant growth, and development 
(Mehmet et al. 2006; Saleh and Madany 2015). Most of the 
cereals are sensitive to salinity stress at the germination and 
early seedling phase of development (Ghoulam and Fares 
2001). Salinity also inhibits plant reproduction that decreases 
spikelet number, thousand grain weight, and finally grain yield 
(Ghogdi et al. 2012). Additionally, salinity effects the plant 
growth by inhibiting photosynthesis, water and ion trans-
port, through reducing stomatal conductivity and increased 
intracellular carbon dioxide concentration. High NaCl levels 
alter the nutrient uptake from the soil; decrease P, K, and Ca 
ions and increase  Na+ concentration; and also inhibit protein 
synthesis, enzyme activities, and membrane permeability 
(Radhakrishnan and Lee 2015). Germination percentage, 
root length, callus size, coleoptile length, and growth are also 
known to be reduced by the increasing salinity levels. Simi-
larly, it has been reported that the limited  Na+ transport to 
shoot in the salt-tolerant wheat genotype was due the regu-
lation of xylem loading transporters (Hussain et al. 2015). 
Landraces, synthetic hexaploid wheat, wild species, and 
other germplasm sources have been promoted as providing 
a potential source of novel genetic variation useful for bread 
wheat improvement (Mujeeb-Kazi 2003). A number of such 
materials have been introduced as breeding parents for pro-
grams aiming at salinity tolerance (Zavala-Fonseca et al. 1998; 
Pritchard et al. 2001, 2002; Mujeeb-Kazi and Diaz De Leon 
2002; Colmer et al. 2006). Many efforts have been diverted by 
the major wheat-breeding programs of the region to breed salt-
tolerant varieties. The availability of the donors for any trait is 
the prerequisite for initiating any targeted breeding program. In 
India, the universal salinity donor namely ‘Kharchia’ has been 
extensively used for this purpose (Chatrath et al. 2007). There 
is an urgent need to scout for new sources of tolerance to have 
diversity in donors. The present study reports the variation in 
response to salt stress in a set of Iranian landraces at seedling 
stage with the aim to identify salt-tolerant genotype(s). The 
identified genotypes would be valuable resources for breeding 
programs and scientific research toward better understanding 
of salt tolerance mechanisms of crop with the goal of creating 
new local wheat varieties of higher adaptation abilities to soil 
salinization in agricultural lands.

Materials and methods

Plant material

A set of 239 Iranian wheat landraces procured from CIM-
MYT, a universal salt-tolerant wheat cultivar, ‘Kharchia 65,’ 

KRL 213, a salt-tolerant genotype developed by Central Soil 
Salinity Institute, Karnal, Haryana, India, and two popular 
commercial wheat varieties of the region (HD 2967 & PBW 
725) constituted the plant material. PBW 725 (PBW 621//
GLUPRO/3*PBW 568/3/PBW621) is the variety developed 
and released by Punjab Agricultural University, Ludhiana, 
for cultivation under timely sown irrigated (TSI) conditions 
and HD2967 (ALD/COC//URES/3/HD2160M/HD 2278) 
is developed and released by IARI, New Delhi, India, for 
cultivation under TSI conditions. Kharchia 65 (EG-593/
Kharchia local) and KRL 213 (Cndo/R143//Ente/Mexi_2/3/ 
Ae.sq./4/Weaver/5/2*Kauz) are the stress-tolerant cultivars 
which have been specifically bred for cultivation under salt 
stressed lands. Kharchia 65 was developed and released in 
1971, whereas KRL 213 was released in 2010. To ensure 
that pure seeds were used and to minimize heterogeneity 
and contamination, multiplication using single ear method 
was carried out and the harvested seeds were then used for 
the evaluation at germination and seedling stage under con-
trolled conditions.

Screening of germplasm against NaCl stress

Seeds were surface sterilized using 0.1% mercuric chloride 
solution for about 2 min, then rinsed with water, and were 
air-dried. Ten random seeds with no visible damage from 
each landrace were placed on germination paper, moistened 
with NaCl solution with 3 replications, and subsequently 
rolled up in cigar roll method as described by Zhu et al. 
(2005). These were placed in growth chamber in darkness 
at 25 °C for 3 days and then grown under a photoperiod of 
16/8 h (light/dark). Cigar roll method was used with some 
local modifications. After 2 weeks of seedling growth in 
commercial-grade NaCl solution (at dose as per the spe-
cific experiment), the observations on germination percent-
age, root Length (RL), shoot length SL (SL), fresh root 
weight (FRW), fresh shoot weight (FSW), and vigor index 
VI [(Average SL + Average RL) × germination percentage] 
were measured. Later, dry root weight (DRW) and dry shoot 
weight (DSW) were calculated after drying the shoot and 
root for 72 h in oven at 60–62 °C.

For coleoptile length (CL) measurement, 20 uniform-
sized seeds of each genotype with no physical damage were 
placed in the middle of a moist heavy grade germination 
paper with NaCl solution and distilled water, about one cen-
timetre apart with germ end down. The germination paper 
was then folded vertically in half with the seed placed in 
the crease; the folded half was again folded horizontally 
four times and placed in a plastic box with holes at the base 
to drain excess water. The plastic boxes were then placed 
inside a growth chamber at a constant temperature of 25 °C 
in complete darkness. After 10 days, the average CL of 20 



Cereal Research Communications 

1 3

randomly selected seedlings were recorded to the near-
est millimeter measuring from the base of the seed to the 
coleoptile tip.

Stress tolerance index (STI) for various traits was 
recorded according to the following formula:

Germination stress tolerance index (GRSI):

Coleoptile length stress tolerance index (CLSI):

Root length stress tolerance index (RLSI):

Shoot length stress tolerance index (SLSI):

Root fresh weight (RFW) stress tolerance index (REWSI):

Shoot fresh weight (SFW) stress tolerance index 
(SFWSI):

Root dry weight (RDW) stress tolerance index (RDWSI):

Shoot dry weight (SDW) stress tolerance index (SDWSI):

Vigor index stress tolerance index (VISI):

Standardization of the optimum dose of NaCl 
for inducing salt stress to evaluate the germplasm 
set

Any level of stress which is able to finally elucidate the 
physiological differences among landraces in response to 

(1)

GRSI =
Germination percentage of stressed plant

Germination percentage of control plant
× 100

(2)CLSI =
Coleoptile length of stressed plant

Coleoptile length of control plant
× 100

(3)RLSI =
Root length of stressed plant

Root length of control plant
× 100

(4)SLSI =
Shoot length of stressed plant

Shoot length of control plant
× 100

(5)RFWSI =
Root fresh weight of stressed plant

Root fresh weight of control plant
× 100

(6)SFWSI =
Shoot fresh weight of stressed plant

Shoot fresh weight of control plant
× 100

(7)RDWSI =
Root dry weight of stressed plant

Root dry weight of control plant
× 100

(8)SDWSI =
Shoot dry weight of stressed plant

Shoot dry weight of control plant
× 100

(9)VISI =
Vigour index of stressed plant

Vigour index of control plant
× 100

salt stress would be considered the optimum stress level. 
For this, an experiment was set up using Kharchia 65, KRL 
213, PBW 725, HD 2967 and ten randomly selected Ira-
nian landraces with aim to standardize the dose of stress 
creating agent (NaCl) at seedling stage using the cigar roll 
method. The set was subjected to different doses of NaCl 
(0, 25, 50, 75, 100, 125, and 150 mM) for creating stress 
environment. This was critical as much knowledge about 
response of Iranian landraces to salinity stress is not avail-
able. The experiment was carried out in completely rand-
omized design (CRD) design with three replications under 
laboratory conditions. The concentrations of NaCl [T1, 
control (distilled water), T2 (25 mM), T3 (50 mM), T4 
(75 mM), T5 (100 mM), T6 (125 mM), and T7 (150 mM)] 
were prepared by dissolving calculated amount of scien-
tific-grade NaCl in distilled water.

Statistical analysis

The data were analyzed as standard procedure PROC GLM 
in SAS (Version 9.3, SAS Institute) for analysis of variance 
(ANOVA), and means were used for construction of differ-
ent graphs. The description of the recoded observation was 
depicted as the bar graphs, and hierarchical cluster was per-
formed followed by K-mean matrix for various traits using 
Minitab 18. The correlation between different traits was cal-
culated using the Pearson correlation coefficient using the 
IBM SPSS statistics 25.

Results

Optimization of NaCl concentration for evaluation

The experiment clearly revealed that response of seedling 
parameters in wheat cultivars used as control and Iranian 
landraces up to 75 mM NaCl could not differentiate the 
genetic differences for to salt stress tolerance. There was a 
significant reduction in germination percentage and other 
seedling traits at dose of 100 mM concentration of NaCl 
in wheat varieties PBW 725 and HD2967 (Supplementary 
Table S1). Stress induced using 100 mM NaCl did not dif-
ferentiate much among landraces, whereas stress induced 
using 150 mM NaCl concentration showed differences in 
landraces, but at the same time, inhibited total germination 
in few accessions (IWA 8607746 and IWA 8614325). Maxi-
mum differences were observed at 125 mM NaCl concentra-
tion. Based upon these observations, the NaCl concentration 
of 125 mM was chosen to be the best dose to differentiate the 
Iranian landraces effectively with the aim to identify tolerant 
landrace accessions.
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Screening of germplasm

The complete germplasm set consisting of 239 Iranian 
landraces and four wheat varieties was screened for seed-
ling traits at 125 mM NaCl and distilled water as control 
(0 mM). There was significant variation for response to salt 
stress tolerance in Iranian landraces (Table 1). ANOVA 
revealed significant differences among landraces and vari-
ables response to 125 mM NaCl used for creating salinity 
stress. Interaction between the landraces and salt concen-
tration was also observed to be significant for all the traits 
except germination and RDW. The analysis showed varia-
tion in CL, germination percentage, and other seedling traits 
(Fig. 1A). There were significant differences in germina-
tion percentage, CL, RL, SL, RFW, RDW, SFW, SDW, and 
VI score between the genotypes (P < 0.05). The reduction 
under saline conditions compared to control conditions for 
germination percentage and CL was 17.53% and 18.48%, 
respectively. The average root and SL decreased by 26.27% 
from 17.76 cm under control to 13.09 cm under salt stress 
conditions and by 47.55% from 14.72 cm under control 
conditions to 7.72 cm under saline conditions, respectively. 
The average RFW reduced by 41.20% from 0.134 g under 
control to 0.079 g under stress conditions. The average root 
and SDW also decreased but to a lesser extent, from 0.030 g 
in control conditions to 0.0179 g under salt stress and by 
42.41% from 0.055 g to 0.032 g, respectively. The average 
SFW decreased by 42.30% from 0.337 g under control con-
ditions to 0.194 g under salt stress conditions. The average 
VI decreased by 42.37% from 3350.95 to 1930.86 under 
control and salt stress conditions, respectively.

Stress tolerance index for all the traits of whole set is 
given as supplementary data, (Supplementary Table S2). 
Landraces IWA 8600338, IWA 8600031, IWA 8600084, 
IWA 8600841, IWA 8602728, IWA 8606739, IWA 
8611786, IWA 8613166, and IWA 8611583 had minimum 
effect of stress on germination under stress conditions and 
had better germination percentage than Kharchia 65 and 
KRL 213. IWA 8600291, IWA 8600338, IWA 8607803, 

IWA 8604640, IWA 8613426, IWA 8611786, IWA 
8611326, IWA 8610487, IWA 8600527, IWA 8600278, 
IWA 8600303, and IWA 8600179 landraces had superior 
performance based upon VI as compared to Kharchia 65 
and KRL 213, whereas Kharchia 65 genotype was more 
vigorous than PBW 725 and HD 2967. RLSI, SFSI, RFSI, 
VI VISISDSI, and RDSI clearly pointed toward the influ-
ence of stress conditions on the genotypes.

From the data on physiological stress tolerance indi-
ces like GRSI, CLSI, RLSI, SLSI, VISI, etc., it is dem-
onstrated that five landrace accessions (IWA 8600278, 
IWA 8600291, IWA 8611786, IWA 8600179, and IWA 
8600303) (Table S2) were ranked better than the best 
salt-tolerant check and these indices can be used to screen 
the wheat germplasm for salt tolerance and can be the 
quick reflective characters for salt tolerance when select-
ing a large set of germplasm for tolerance. Table S2 also 
shows the landraces categorized as potential highly tol-
erant (HT), moderately tolerant (MT), and non-tolerant 
(NT) genotypes against salinity stress. These can be fur-
ther characterized for subcomponents of tolerance and can 
be efficiently used by wheat breeders to pyramid different 
components of salt stress tolerance in elite wheat germ-
plasm. In the era of accelerated plant breeding, very effi-
cient techniques like double haploid production (Chahal 
and Gosal 2002), speed breeding or accelerated breeding 
(Watson et al. 2017), etc. are available for quick mobi-
lization of traits of interest into agronomical desirable 
backgrounds.

The mean value for all individual traits is given in 
supplementary material (Table S3). CL is the important 
seedling trait and is adversely affected by osmotic stress. 
There was significant (P < 0.05) reduction in CL under 
stress conditions. CL ranged between 2.37 cm and 6.57 cm 
with an average value of 4.58 cm under controlled condi-
tion and 1.13 cm to 6.00 cm with an average value of 
3.78 cm under saline conditions. In saline conditions, 
maximum value of CL (6.00 cm) was observed in landrace 
IWA 8602728 followed by IWA 8600397 (5.86 cm) and 

Table 1  Analysis of variance (ANOVA) for coleoptile length, germination percentage, and seedling traits in Iranian landraces and wheat culti-
vars (included as controls) under salt stress conditions

DF degree of freedom, Germ % germination percentage, RL root length, SL shoot length, CL coleoptile length, RFW root fresh weight, RDW 
root dry weight, SFW shoot fresh weight, SDW shoot dry weight, VI vigor index
*Significant differences at 5% level

Mean square of the characters

Source of variation DF GERM% RL SL CL RFW RDW SFW SDW VI

Treatment 1 12,688.59* 7568.01* 25,739.35* 159.74* 0.506* 0.010* 7.715* 0.0377* 658,346,528.7*
Genotypes 243 200.32* 46.03012* 46.1848* 2.677* 0.0156* 0.00017* 0.023* 0.00048* 1,610,080.3*
Trt*geno 243 107.79 15.42111* 25.2915* 1.109* 0.00496* 0.00012 0.011* 0.00033* 632,186.9*
Error 976 80.25 7.32014 7.34863 0.652425 0.001346 0.00011 0.005 0.00015 411,770
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Kharchia 65 (5.80 cm) and minimum was 1.13 cm in IWA 
8603011 followed by IWA WILSON VE 141 (1.64 cm) 
(Supplementary Table S3).

Significant reduction in RL was found under higher salt 
concentration. RL ranged between 3.39 and 20.00 cm with 
an average value of 13.08 cm under saline conditions. Maxi-
mum RL (20.00 cm) was found in landrace IWA 8607803 
followed by IWA 8604640 (19.73 cm) under saline condi-
tions. One landrace (IWA 8600527) had equal reduction in 
RL as in Kharchia 65, whereas 21 landraces had even less 
reduction in RL. Root and SFW are the measure of root and 
shoot development and hence their biomass. Salinity inhib-
ited SL of all genotypes and hence influenced the SLSI. Dry 
weight, measured after drying the root and shoot, gives the 
absolute weight of the tissue without water. These are the 
traits which can be used as preliminarily criteria to evaluate 
growth of a specific genotype under stress conditions. The 
minimum reduction in dry root and shoot weight among con-
trol cultivars was in Kharchia 65 and KRL 213 genotypes, 
respectively. IWA 8607910, IWA 8600461, PI 225290 lan-
draces had less reduction in RDW, whereas 50 landraces had 

less reduction in SDW than the best check (Supplementary 
Table S3).

Dendrogram from cluster analysis (Fig. 2) showed that 
all genotypes were divided into six clusters. The cluster 
analysis based on complete linkage correlation coefficient 
distance was performed in the present study which split 
the 243 wheat genotypes into six clusters (Table 2, Fig. 2). 
The cluster-1 comprised of twenty-six genotypes, among 
which one was ranked highly tolerant and rest 25 were 
grouped as non-tolerant landraces. Cluster 2 comprised 
of maximum number of tolerant genotypes (188) which 
could be categorized into 2 highly tolerant, 8 moderately 
tolerant, and rest 178 as non-tolerant landraces. Cluster-3 
comprised of twenty-two genotypes consisting 9 highly 
tolerant, 6 moderately tolerant, and 7 non-tolerant geno-
types. Clusters 4, 5, and 6 had two, four, and one geno-
types, respectively. Cluster three represented the maximum 
landrace accessions with salt stress tolerance. The best 
check Kharchia 65 was included in cluster 5, whereas KRL 
213 and PBW 725 were in cluster 2. HD 2967 was grouped 
in cluster 1. This shows diversity in the landraces set and 

Fig. 1  Box plots of growth trait data of Triticum aestivum under 
0 mM NaCl (C) and 125 mM NaCl (S). Germination percentages (A), 
root length (B), shoot length (C), root fresh weight (D), shoot fresh 
weight (E), root dry weight (F), coleoptile length (G), vigor index 

(H), and shoot dry weight (I). Box edges show upper and lower quar-
tile, and the median is shown in the middle of the box. Mild outliers 
are shown as dots
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hence can be used as parents to build up populations for 
selection of transgressive segregants against salt stress in 
subsequent generations.

The correlation analysis was also performed to under-
stand the architecture of sub components of salt stress tol-
erance at seedling stage for screening the germplasm. The 
correlation analysis (Fig. 3) indicated some important asso-
ciations among the germination, CL, root and SL, root and 
shoot biomass and VI. Significant and positive correlation 
was observed between CLSI and RDWSI, RFW stress tol-
erance index (RFWSI), RL stress tolerance index (RLSI), 
SFW stress tolerance index (SFWSI), SLSI, SDWSI, and 
VISI, similarly for RDWSI and RFWSI, RLSI, SFWSI, 
SLSI, SDWSI, and VISI. Significant and positive correla-
tions were also obtained between RFWSI and RLSI, SFWSI, 
SLSI, and SDWSI, and relationship between RFWSI and 
RLSI, SFWSI, SLSI, and SDWSI was also positive. Also, 
significantly positive correlation was recorded between 
CLSI and RDWSI, RFWSI, RLSI, SFWSI, SLSI, SDWSI, 
and VISI which clearly depict that these physiological 
indices can be utilized to screen the genotypes for salinity 
tolerance. These physiological indices could be a reliable 
and efficient method for assessing salt tolerance in wheat 
genotypes.

Discussion

Present results indicated that stress tolerance indices could 
explain some of the mechanisms indicating tolerance to 
salinity. Landrace accession IWA 8600278, IWA 8600291, 
IWA 8611786, IWA 8600179, and IWA 8600303 was most 
tolerant for salt stress. The genotypes could be efficiently 
categorized into highly tolerant, moderately tolerant, and 
non-tolerant classes based on the seedling indices so as to 
facilitate their further use in breeding programs. The data 
in the present study indicated that the genotypes with high 
GRSI, CLSI, RLSI, SLSI, RFWSI, SFWSI, and VISI were 
tolerant to salt stress. Stress Tolerance Index (STI) and 
Geometric Mean Productivity index (GMP) are efficient 
for identification of genotypes with good performance to 
non-stress and stress conditions (Khalili et al. 2004; Gol-
bashy et al. 2010). Furthermore, Moghaddam and Hadi-
zadeh (2012) found that stress tolerance index (STI) was 
also useful in selection of maize genotypes significantly 
differing in a response under stress and non-stress con-
ditions. Generally, indices having high correlations with 
plant response in stress and non-stress conditions are 
introduced as the best ones (Ashraf et al. 2015). Different 

Fig. 2  Dendrogram from cluster 
analysis for salt tolerance in 
different genotypes

Table 2  Distribution of Iranian 
landraces and check varieties in 
clusters

Cluster 
number

Number Salinity tolerance status Cluster number Number Salinity tolerance status

1 26 1 highly tolerant 5 4 2 highly tolerant
25 non-tolerant 2 non-tolerant

2 188 2 highly tolerant 6 1 Non-tolerant
8 moderately tolerant
178 non-tolerant

3 22 9 highly tolerant
6 moderately tolerant
7 non-tolerant

4 2 1 moderately tolerant
1 non-tolerant
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statistical approaches like absolute salt tolerance (Dewey 
1962), relative salt tolerance (Maas 1986), susceptibility 
index (Fischer and Maurer 1978), and GGE biplot (Yan 
2001; Ali et al. 2012) have been used to determine the salt 
tolerance response of crop plants. The tolerance to vari-
ous stresses in field at adult plant stage is usually reflected 
by the tolerance at seedling stage of plant. This fact has 
been exploited with success in maize (Khan et al. 2003a), 
sorghum (Kausar et al. 2012), wheat (Ali et al. 2002; Khan 
et al. 2003b), soybean (Kamal et al. 2003), and cotton 
(Azhar and Ahmad 2000).

Iranian wheat landraces provide a rich source of genetic 
diversity and carry resistance for many biotic stresses such 
as bunt diseases (Bonman et  al. 2015), Russian wheat 
aphid (Ehdaie and Baker 1999; Valdez et al. 2012; Bon-
man et al. 2015), leaf and stripe rusts (Kertho et al. 2015), 
stem rust (Rouse et al. 2011; Newcomb et al. 2013), and abi-
otic stresses such as salinity (Jafari-Shabestari et al. 1995), 
drought and heat (Ehdaie et al.1988). To date, most of the 
Iranian germplasm lines have not been characterized and 

efficiently used in modern plant breeding (Hoisington et al. 
1999; Akbarpour et al. 2015). These germplasm lines not 
only provide new source of resistance to biotic and abiotic 
stresses, but also can enhance the diversity of breeding mate-
rials (Huang et al. 2010). These findings are in accordance 
with the results of Kausar et al. (2012).

Seed germination and early seedling growth determine 
stand establishment and yield potential. Germination is a 
crucial stage for plant establishment (Song et al. 2008) as 
poor germination may lead to poor stand establishment, 
resulting in lower grain yields and large number of studies 
on salt tolerance in different crop species is mostly based 
on the germination percentage (Song et al. 2008; Tlig et al. 
2008; Badridze et al. 2009). Despite the importance of ger-
mination to production on salt-affected soils, more is known 
of the mechanism of salt tolerance in vegetative and repro-
ductive stages than during germination (Zhang et al. 2010). 
In addition, the mechanisms for salt tolerance that have been 
identified during vegetative compartmentalization (Qiu et al. 
2007) or  Na+ bound in starch granules (Kanai et al. 2007) 

Fig. 3  Correlation among dif-
ferent seedling traits
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are energy intensive and reduce carbohydrate reserves avail-
able to the seedling. Thus, although excess sodium and chlo-
ride ions imbalance has a deleterious effect on many cellular 
systems at all growth stages (Zhu et al. 1997), metabolic 
tolerance to these ions is more important during germina-
tion than at later life stages, due to the limited carbohydrates 
reserves available in the seed (Zhang et al. 2010). Saboora 
et al. (2006) reported nine wheat cultivars at germination 
and early seedling growth under six salt treatments and 
found that different salt treatments had significant nega-
tive effect on germination percentage, rate of germination, 
total dry weight, and dry weight of root and shoot. RL as a 
good selection criterion under salt stress conditions has also 
been reported by Ashraf et al. (1986). Previous studies also 
reported reduction in RL (Adcock et al. 2007), SL (Munns 
and James 2003), fresh root weight (Radi et al. 2013), and 
fresh shoot weight (Rahman et al. 2008). The genotypes 
with a higher VI under stress conditions were considered 
as salt-tolerant genotypes. Different researchers have used 
cluster analysis to group different wheat genotypes based 
on various characteristics and found similarities of wheat 
genotype within a group (Nookr and Khaliq 2007). The lit-
erature emphasizes on the use of cluster analysis to screen 
the crop germplasm for stress tolerance (Noorifarjam et al. 
2013). Selected landraces could be used in further breeding 
programs for salt tolerance.

Soil salinization is a major factor contributing to the loss 
of productivity of cultivated soils, and a large salt-affected 
area and economical losses due to low productivity are a 
matter of concern for agriculturists. Moreover, population 
growth, urbanization, industrialization, and climate change 
including salinity stress create an alarming situation that 
poses a threat to national and international food security 
(Hussain et al. 2015). Developing wheat varieties that give 
a good yield on saline soils seems to be the long-term pos-
sible solution. In India, almost all salt-tolerant wheat germ-
plasm is derived from Kharchia 65, a line developed from 
selections from farmers’ fields in the sodic-saline soils of 
Kharchi–Pali area of Rajasthan (Rana 1986). KRL 1–4, 
as cross of Kharchia 65 with WL 711, has done well on 
the saline soils of northern India which was developed by 
pedigree method of selection and released through CVRC 
in 1990, but not in Pakistan, possibly because of the heav-
ier soils and greater problems of waterlogging (Hollington 
2000). In addition, two more varieties KRL 210 and KRL 
213 have been released for cultivation under salt affected 
soils. The Pakistan selection Lu26s showed improved yields 
on saline soils in Pakistan (Qureshi et al. 1980), but it is 
susceptible to rust and not adapted to dense saline-sodic 
soils where there is the possibility of waterlogging. Lu26s 
was crossed with Kharchia, and two salt-tolerant genotypes, 
S24 and S36, were selected from  F3 seed at maturity lev-
els of 24 and 36dS/m, respectively (Ashraf and O’ Leary 

1996). Cultivar S24 was derived from the cross of Lu26s 
and Kharchia (Ashraf and O’ Leary 1996). S24 had high 
salt tolerance, as high as Kharchia and SARC-1 possibly 
due to its low leaf  Na+ accumulation (Ashraf 2002). Yield 
can be increased significantly by developing salt-tolerant 
crop plants (Clark and Duncan 1993) by exploiting genetic 
diversity for salt tolerance in species and developing reliable 
screening techniques.

Usually the leads obtained by screening wide germplasm 
are not utilized for cultivar development (Munns et al. 2006). 
Though the identified landraces could not be directly cul-
tivated on salt-affected soils, it can be efficiently used for 
breeding germplasm tolerant to salt stress. The information 
regarding significant correlations among the characters is 
important for initiation of any breeding program because it 
provides a chance for selection of desirable genotypes with 
desirable traits simultaneously (Ali et al. 2009). Since the 
area under salinity stress is increasing at an alarming rate, 
the identification of tolerant sources and quick mobiliza-
tion of components of tolerance in elite backgrounds is very 
urgent; these identified donors can be of immense use. The 
tolerant landraces identified in this study are under further 
investigation to determine the genetic basis of tolerance and 
mobilization of tolerance into adapted elite cultivars.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42976- 022- 00245-6.
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