Published in Molecular Breeding, 2022

Download PDF here

Abstract: Improvement of grain protein content (GPC), loaf volume, and resistance to rusts was achieved in 11 Indian wheat cultivars that are widely grown in four different agro-climatic zones of India. This involved use of marker-assisted backcross breeding (MABB) for introgression and pyramiding of the following genes: (i) the high GPC gene Gpc-B1; (ii) HMW glutenin subunits 5 + 10 at Glu-D1 loci, and (iii) rust resistance genes, Yr36, Yr15, Lr24, and Sr24. GPC increased by 0.8 to 3.3%, although high GPC was generally associated with yield penalty. Further selection among high GPC lines allowed identification of progenies with higher GPC associated with improvement in 1000-grain weight and grain yield in the backgrounds of the following four cultivars: NI5439, UP2338, UP2382, and HUW468. The high GPC progenies (derived from NI5439) were also improved for grain quality using HMW glutenin subunits 5 + 10 at Glu-D1 loci. Similarly, progenies combining high GPC and rust resistance were obtained in the backgrounds of following five cultivars: Lok1, HD2967, PBW550, PBW621, and DBW1. The improved pre-bred lines developed following multi-institutional effort should prove a valuable source for the development of cultivars with improved nutritional quality and rust resistance in the ongoing wheat breeding programmes.

Recommended citation: Gupta, P. K., Balyan, H. S., Chhuneja, P., Jaiswal, J. P., Tamhankar, S., Mishra, V. K., Vishwakarma, M. K. (2022) “Pyramiding of genes for grain protein content, grain quality, and rust resistance in eleven Indian bread wheat cultivars: a multi-institutional effort”. Molecular Breeding, 42(4), 116. Retrieved from https://doi.org/10.1007/s11032-022-01277

Recommended citation: Gupta, P. K., Balyan, H. S., Chhuneja, P., Jaiswal, J. P., Tamhankar, S., Mishra, V. K., Vishwakarma, M. K. (2022) "Pyramiding of genes for grain protein content, grain quality, and rust resistance in eleven Indian bread wheat cultivars: a multi-institutional effort". Molecular Breeding, 42(4), 116. Retrieved from https://doi.org/10.1007/s11032-022-01277

Updated: